Художественная культура и искусство Курс лекций по истории искусства Теория машин и механизмов Математический анализ Электротехника и электроника Расчеты электрических цепей Начертательная геометрия Примеры выполнения заданий
контрольной работы
Лекции и задачи по физике Компьютерная  безопасность Информационные системы Получение электрической энергии Атомная физика
Информационные системы Технологии программирования Прогноз развития информационных технологий Мультимедийные технологии Телекоммуникационные технологии Технологии баз данных Геоинформационные системы

Технологии искусственного интеллекта

Термин «искусственный интеллект» – ИИ – (AI – artificial intelligence) был предложен в 1956 г. на семинаре с аналогичным названием в Дартсмутском колледже (США). Семинар был посвящен разработке методов решения логических, а не вычислительных задач. В английском языке данное словосочетание не имеет той слегка фантастической антропоморфной окраски, которую оно приобрело в довольно неудачном русском переводе. Слово intelligence означает «умение рассуждать разумно», а вовсе не «интеллект», для которого есть термин intellect. Вскоре, после признания искусственного интеллекта отдельной областью науки, произошло разделение его на два направления: «нейрокибернетика» и «кибернетика черного ящика». Эти направления развиваются практически независимо, существенно различаясь как в методологии, так и в технологии. И только в настоящее время стали заметны тенденции к объединению этих частей вновь в единое целое.

Зарождение нейрокибернетики

Основную идею этого направления можно сформулировать следующим образом:

Единственный объект, способный мыслить – это человеческий мозг. Поэтому любое «мыслящее» устройство должно каким-то образом воспроизводить его структуру.

Таким образом, нейрокибернетика ориентирована на программно-аппаратное моделирование структур, подобных структуре мозга. Физиологами давно установлено, что основой человеческого мозга является большое количество (до 1021) связанных между собой и взаимодействующих нервных клеток – нейронов. Поэтому усилия нейрокибернетики были сосредоточены на создании элементов, аналогичных нейронам, и их объединении в функционирующие системы. Эти системы принято называть нейронными сетями, или нейросетями.

Первые нейросети были созданы Розенблаттом и Мак-Каллоком в 1956–1965 гг. Это были попытки создать системы, моделирующие человеческий глаз и его взаимодействие с мозгом. Устройство, созданное ими тогда, получило название пер-септрона (perceptron). Оно умело различать буквы алфавита, но было чувствительно к их написанию. Постепенно в 70–80 годах количество работ по этому направлению искусственного интеллекта стало снижаться. Слишком неутешительны были первые результаты. Авторы объясняли неудачи малой памятью и низким быстродействием существующих в то время компьютеров.

Однако в 1980-х в Японии в рамках проекта «ЭВМ V поколения» был создан первый нейрокомпьютер, или компьютер VI поколения. К этому времени ограничения по памяти и быстродействию были практически сняты. Появились транспьютеры – параллельные компьютеры с большим количеством процессоров. Транспьютерная технология – это только один из десятка новых подходов к аппаратной реализации нейросетей, которые моделируют иерархическую структуру мозга человека. Основная область применения нейрокомпьютеров сегодня – это задачи распознавания образов, например, идентификация объектов по результатам аэрофотосъемки из космоса. Можно выделить три подхода к созданию нейросетей:

Аппаратный – создание специальных компьютеров, нейрочипов, плат расширения, наборов микросхем, реализующих все необходимые алгоритмы.

Программный – создание программ и инструментариев, рассчитанных на высокопроизводительные компьютеры. Сети создаются в памяти компьютера, всю работу выполняют его собственные процессоры.

Гибридный – комбинация первых двух. Часть вычислений выполняют специальные платы расширения (сопроцессоры), часть – программные средства.

От кибернетики «черного ящика» к ИИ

В основу этого подхода был положен принцип, противоположный нейрокибернетике.

Не имеет значения, кик устроено «мыслящее» устройство. Главное, чтобы на заданные входные воздействия оно реагировало так же, как человеческий мозг. Сторонники этого направления мотивировали свой подход тем, что человек не должен слепо следовать природе в своих научных и технологических поисках. Так, например, очевиден успех колеса, которого не существует в природе, или самолета, не машущего крыльями, подражая птице. К тому же пограничные науки о человеке не смогли внести существенного теоретического вклада, объясняющего хотя бы приблизительно, как протекают интеллектуальные процессы у человека, как устроена память и как человек познает окружающий мир.

Это направление искусственного интеллекта было ориентировано на поиски алгоритмов решения интеллектуальных задач на существующих моделях компьютеров. Существенный вклад в становление новой науки внесли ее «пионеры»: Маккарти (автор первого языка программирования для задач ИИ – ЛИСПа), Минский (автор идеи фрейма и фреймовой модели представления знаний), Ныюэлл, Саймон, Шоу, Хант и др.

В 1956–1963 гг. велись интенсивные поиски моделей и алгоритмов человеческого мышления и разработка первых программ на их основе. Представители существующих гуманитарных наук – философы, психологи, лингвисты – ни тогда, ни сейчас не в состоянии были предложить таких алгоритмов. Тогда кибернетики начали создавать собственные модели. Так последовательно были созданы и опробованы различные подходы.

1. В конце 50-х годов родилась модель лабиринтного поиска. Этот подход представляет задачу как некоторое пространство состояний в форме графа, и в этом графе проводится поиск оптимального пути от входных данных к результирующим. Была проделана большая работа по разработке этой модели, но для решения практических задач эта идея не нашла широкого применения. В первых учебниках по искусственному интеллекту [Хант, 1986; Эндрю, 1985] описаны эти программы – они играют в игру «15», собирают «Ханойскую башню», играют в шашки и шахматы.

Начала 60-х – это эпоха эвристического программирования. Эвристика – правило, теоретически не обocнованное, которое позволяет сократить количество переборов в пространстве поиска. Эвристическое программирование – разработка стратеги и действий на основе известных, заранее заданных эвристик [Александров, 1975].

В 1963–1970 гг. к решению задач стали подключать методы математической логики. Робинсон разработал метод резолюций, который позволяет автоматически доказывать теоремы при наличии набора исходных аксиом. Примерно в это же время выдающийся отечественный математик Ю.С. Маслов предложил так называемый обратный вывод, впоследствии названный его именем, решающий аналогичную задачу другим способом [Маслов, 1983]. На основе метода резолюций француз Алъбер Колъмероэ в 1973 г. создает язык логического программирования Пролог. Большой резонанс имела программа «Логик-теоретик», созданная Ныюэлом, Саймоном и Шоу, которая доказывала школьные теоремы. Однако большинство реальных задач не сводится к набору аксиом, и человек, решая производственные задачи, не использует классическую логику, поэтому логические модели при всех своих преимуществах имеют существенные ограничения по классам решаемых задач.

4. История искусственного интеллекта полна драматических событий, одним из которых стал в 1973 г. так называемый «доклад Лайтхилла», который был подготовлен в Великобритании по заказу Британского совета научных исследований. Известный математик Д. Лайтхилл, никак с ИИ профессионально не связанный, подготовил обзор состояния дел в области ИИ. В докладе были признаны определенные достижения в области ИИ, однако уровень их определялся как разочаровывающий, и общая оценка была отрицательная с позиций практической значимости. Этот отчет отбросил европейских исследователей примерно на 5 лет назад, так как финансирование ИИ существенно сократилось.

5. Примерно в это же время существенный прорыв в развитии практических приложений искусственного интеллекта произошел в США, когда к середине 1970-х годов на смену поискам универсального алгоритма мышления пришла идея моделировать конкретные знания специалистов-экспертов. В США появились первые коммерческие системы, основанные на знаниях, или экспертные системы (ЭС). Стал применяться новый подход к решению задач искусственного интеллекта – представление знаний. Созданы MYCIN и DENDRAL [Shortliffe, 1976; Buchanan. Feigenbaum, 1978], ставшие уже классическими, две первые экспертные системы для медицины и химии. Существенный финансовый вклад вносит Пентагон, предлагая базировать новую программу министерства обороны США (Strategic Computer Initiative – SCI) на принципах ИИ. Уже вдогонку упущенных возможностей в начале 80-х объявлена глобальная программа развития новых технологий ESPRIT (Европейский Союз), в которую включена проблематика искусственного интеллекта.

6. В ответ на успехи США в конце 70-х в гонку включается Япония, объявив о начале проекта машин V поколения, основанных на знаниях. Проект был рассчитан на 10 лет и объединял лучших молодых специалистов (в возрасте до 35 лет) крупнейших японских компьютерных корпораций. Для этих специалистов был создан специально новый институт ICOT, и они получили полную свободу действий, правда, без права публикации предварительных результатов. В результате они создали достаточно громоздкий и дорогой символьный процессор, программно реализующий ПРОЛОГоподобный язык, не получивший широкого признания. Однако положительный эффект этого проекта был очевиден. В Японии появилась значительная группа высококвалифицированных специалистов в области ИИ, которая добилась существенных результатов в различных прикладных задачах. К середине 90-х японская ассоциация ИИ насчитывает 40 тыс. человек.

Начиная с середины 1980-х годов, повсеместно происходит коммерциализация искусственного интеллекта. Растут ежегодные капиталовложения, создаются промышленные экспертные системы. Растет интерес к самообучающимся системам. Издаются десятки научных журналов, ежегодно собираются международные и национальные конференции по различным направлениям ИИ. Искусственный интеллект становится одной из наиболее перспективных и престижных областей информатики (computer science).

История искусственного интеллекта в России

В 1954 г. в МГУ начал свою работу семинар «Автоматы и мышление» под руководством академика А.А. Ляпунова (1911–1973), одного из основателей российской кибернетики. В этом семинаре принимали участие физиологи, лингвисты, психологи, математики. Принято считать, что именно в это время родился искусственный интеллект в России. Как и за рубежом, выделились два основных направления – нейрокибернетики и кибернетики «черного ящика».

В 1954–1964 гг. создаются отдельные программы и проводятся исследования в области поиска решения логических задач. В Ленинграде (ЛОМИ – Ленинградское отделение математического института им. Стеклова) создается программа АЛПЕВ ЛОМИ, автоматически доказывающая теоремы. Она основана на оригинальном обратном выводе Маслова, аналогичном методу резолюций Робинсона. Среди наиболее значимых результатов, полученных отечественными учеными в 60-е годы, следует отметить алгоритм «Kopa» М.М. Бонгарда, моделирующий деятельность человеческого мозга при распознавании образов. Большой вклад в становление российской школы ИИ внесли выдающиеся ученые М.Л. Цетлин, В.Н. Пушкин, М.А. Гаврилов, чьи ученики и явились пионерами этой науки в России (например, знаменитая Гавриловская школа).

В 1965–1980 гг. происходит рождение нового направления – ситуационного управления (соответствует представлению знаний, в западной терминологии). Основателем этой научной школы стал проф. Д.А. Поспелов. Были разработаны специальные модели представления ситуаций – представления знаний [Поспелов, 1986]. В ИПМ AН СССР был создан язык символьной обработки данных РЕФАЛ [Тургин, 1968].

При том, что отношение к новым наукам в советской России всегда было настороженное, наука с таким «вызывающим» названием тоже не избежала этой участи и была встречена в Академии наук в штыки [Поспелов, 1997]. К счастью, даже среди членов Академии наук СССР нашлись люди, не испугавшиеся столь необычного словосочетания в качестве названия научного направления. Двое из них сыграли огромную роль в борьбе за признание ИИ в нашей стране. Это были академики А. И. Берг и Г. С. Поспелов.

Только в 1974 году при Комитете по системному анализу при президиуме АН СССР был создан Научный совет но проблеме «Искусственный интеллект», его возглавил Г.С. Поспелов, его заместителями были избраны Д.А. Поспелов и Л.И. Микулич. В состав совета входили на разных этапах М.Г. Гаазе-Рапопорт, Ю.И. Журавлев, Л.Т. Кузин, А.С. Нариньяни, Д.Е. Охоцимский, А.И. Половинкин, О.К. Тихомиров, В.В. Чавчанидзе.

По инициативе Совета было организовано пять комплексных научных проектов, которые были возглавлены ведущими специалистами в данной области. Проекты объединяли исследования в различных коллективах страны: «Диалог» (работы по пониманию естественного языка, руководители А.П. Ершов, А.С. Нариньяни), «Ситуация» (ситуационное управление, Д.А. Поспелов), «Банк» (банки данных, Л.Т. Кузин), «Конструктор» (поисковое конструирование А.И. Половинкин), «Интеллект робота» (Д.Е. Охоцимский).

В 1980–1990 гг. проводятся активные исследования в области представления знаний, разрабатываются языки представления знаний, экспертные системы (более 300).

В 1988 г. создается АИИ – Ассоциация искусственного интеллекта. Ее членами являются более 300 исследователей. Президентом Ассоциации единогласно избирается Д.А. Поспелов, выдающийся ученый, чей вклад в развитие ИИ в России трудно переоценить. Крупнейшие центры – в Москве, Петербурге, Переславле-Залесском, Новосибирске. В научный совет Ассоциации входят ведущие исследователи в области ИИ – В.П. Гладун, В.И. Городецкий, Г.С. Осипов, Э.В. Попов, В.Л. Стефанюк, В.Ф. Хорошевский, В.К. Финн, Г.С. Цейтин, А.С. Эрлих и другие ученые. В рамках Ассоциации проводится большое количество исследований, организуются школы для молодых специалистов, семинары, симпозиумы, раз в два года собираются объединенные конференции, издается научный журнал.

Уровень теоретических исследований по искусственному интеллекту в России ничуть не ниже мирового. К сожалению, начиная с 80-х гг., на прикладных работах начинает сказываться постепенное отставание в технологии. На данный момент отставание в области разработки промышленных интеллектуальных систем составляет порядка 3–5 лет.

Современный рынок финансово-экономического прикладного программного обеспечения. Сегодняшний рынок финансово-экономического прикладного программного обеспечения формируется под воздействием трех основных факторов: • постоянно растущих требований потребителей; • конъюнктурного мировоззрения большинства разработчиков; • неустойчивости нормативно-правовой среды. Влияние этих факторов делает рынок разнообразным и неоднородным. Для решения задачи выбора ИС необходимо познакомиться с их классификацией
Технологии искусственного интеллект