Художественная культура и искусство Курс лекций по истории искусства Теория машин и механизмов Математический анализ Электротехника и электроника Расчеты электрических цепей Начертательная геометрия Примеры выполнения заданий
контрольной работы
Лекции и задачи по физике Компьютерная безопасность Информационные системы Получение электрической энергии Атомная физика

Примеры решения задач по сопротивлению материалов (сопромату)

Неупругое деформирование

 В предыдущих главах использовался метод расчета по допускаемым напряжениям. Прочность изделия считалась обеспеченной, если напряжение в опасной точке не превосходило допускаемого напряжения (расчетного сопротивления).

 Фактический коэффициент запаса прочности n определялся как отношение предела текучести  к фактическому напряжению :

 В ряде случаев более правильно расчеты на прочность при действии статических нагрузок вести с учетом пластических деформаций, а запас прочности вычислять как отношение предельной нагрузки Fu к фактически действующей F:

  Для определения предельной нагрузки будем применять методы теории предельного равновесия. Будем считать, что конструкции выполнены из идеально пластических материалов, которые могут быть упруго-идеально пластическими (рис. 8.1) и жестко-идеально пластическими (рис. 8.2).

 Когда напряжение достигает значения σу, говорят, что конструкция «течет» без возможности увеличения напряжений, а деформация  становится неопределенной.

  Предельным значением нагрузки называется такое значение нагрузки Fu, действующей на конструкцию, при котором невозможно дальнейшее ее увеличение, а деформации соответствуют горизонтальному участку на рис. 8.1 и рис. 8.2. Значение предельной нагрузки для конструкции из жестко- идеально пластического и из упруго-идеально пластического материала одно и то же.

Предельная нагрузка для стержневой системы

 Для растянутого элемента конструкции предельное нормальное усилие Nu равно

  (8.1.1)

где А – площадь поперечного сечения элемента.

 Предельная нагрузка Fu всегда соответствует превращению конструкции в механизм. Для определения предельной нагрузки применим методы, определяемые статической теоремой предельного равновесия. Согласно этой теоремы предельная нагрузка является максимальной из всех значений нагрузки, удовлетворяющих условиям равновесия.

 В машиностроении вместо формулы (8.1.1) применяют формулу

   (8.1.2)

где n2 – коэффициент однородности материала, n3 – коэффициент условий работы, учитывающий степень ответственности детали.

 Задача 8.1.1. Определить предельную нагрузку Fu для стержневой системы, показанной на рис. 8.1.1. Предел текучести материала стержней принять = 2900 кг/см2.


Решение. Пусть течет стержень 1 (рис. 8.1.1, а), тогда

 Спроектируем все силы на ось m–m (рис. 8.1.1, б):

откуда находим

 Если же предположить, что течет стержень 2, то будем иметь

  Спроектируем все силы на ось k–k (рис. 8.1.1, в):

  откуда определяем

  Таким образом, получили два значения предельной нагрузки

Fu1 = 9743 кг и Fu2 = 8886 кг,

из которых истинное значение предельной нагрузки будет наименьшим:

 Задача 8.1.2. Определить предельную нагрузку Fu для стержневой системы, показанной на рис. 1.3.4, если А1 = 2 см2, А2 = 1 см2, предел текучести материала стержней σу = 285 МПа.

 Ответ: Fu = 55 кН.

Действие динамических нагрузок Динамической считается такая нагрузка, положение, направление и интенсивность которой зависят от времени, так что необходимо учитывать силы инерции тела в результате ее действия. При этом конструкции или их элементы совершают движения, простейшим видом которых являются колебания. Из различных задач динамики конструкций здесь рассматриваются задачи на действие инерционных и ударных нагрузок, а также задачи на упругие свободные колебания систем с одной степенью свободы.

Инерционные нагрузки В случае, когда динамическое нагружение характеризуется наличием ускорений частиц тела, необходимо учитывать возникающие в них силы инерции, направленные в сторону, противоположную направлению ускорения. Такое нагружение испытывают твердые деформируемые тела, например, при неравномерном поступательном или при равномерном вращательном движении. Указанные силы инерции добавляют к внешним нагрузкам, к собственному весу тела, и далее расчет ведется как и для статического нагружения.

Упругий удар Под ударом понимают резкое изменение скорости соприкасающихся тел в течение малого отрезка времени. Приближенная («техническая») теория удара базируется на двух основных гипотезах: а) кинетическая энергия тела, производящего удар, полностью переходит в потенциальную энергию тела, по которому наносится удар (пренебрегают тепловой энергией и др.); б) распределение напряжений и деформаций по объему тела при ударе принимается таким же, как и при статическом нагружении (пренебрегают волновыми процессами и др.).

Задача. Груз весом Р = 200 Н падает с высоты Н = 0,3 м посередине на шарнирно опертую двухопорную деревянную балку квадратного поперечного сечения со стороной а = 15 см и длиной l = 3 м. Рассчитать запас прочности балки, если модуль продольной упругости материала балки Е = 104 МПа, а предел прочности при расчете на изгиб RИ = 20 МПа. Собственной массой балки, испытывающей удар, пренебречь.

Упругие колебания систем с одной степенью свободы Упругими колебаниями называют движения упругих тел, представляющие собой периодические отклонения их относительно положения равновесия. Колебания, вызванные некоторым начальным воздействием и совершаемые затем под действием собственных сил упругости, называют свободными или собственными. Колебания, происходящие под воздействием внешних периодических сил, называются вынужденными.

 Задача. На конце стальной консоли длиной 1 м, выполненной из двутавра № 8, находится двигатель весом Р = 1230 Н. Требуется определить частоты и периоды свободных колебаний системы – поперечных (изгибных) и продольных, пренебрегая собственным весом балки.

Вынужденные колебания систем с одной степенью свободы К вынужденным колебаниям приводит непрерывное воздействие на механическую систему внешней периодической силы, например, изменяющейся по гармоническому закону ,

 Задача. Определить предельную нагрузку Fu для стержневой системы, показанной на рис.1.3.3. Материал стержней АВ и СD имеет предел текучести σу = 285 МПа, балка АС – абсолютно жесткая. Площади поперечных сечений стержней АВ и СD одинаковы и равны А =

Предельная нагрузка для балок Напряженное состояние изгибаемых конструкций (балок) определяется величинами изгибающих моментов

Задача. Дана статически неопределимая балка постоянного прямоугольного поперечного сечения


На главную