Художественная культура и искусство Курс лекций по истории искусства Теория машин и механизмов Математический анализ Электротехника и электроника Расчеты электрических цепей Начертательная геометрия Примеры выполнения заданий
контрольной работы
Лекции и задачи по физике Компьютерная безопасность Информационные системы Получение электрической энергии Атомная физика

Примеры решения задач по сопротивлению материалов (сопромату)

Осевые моменты инерции плоских сечений простой формы

  Осевым моментом инерции плоского сечения относительно некоторой оси называется взятая по всей его площади А сумма произведений элементарных площадок dA на квадраты их расстояний от этой оси, т.е.

  (2.2.1)

где х – расстояние от элементарной площадки dA до оси у; у – расстояние от элементарной площадки dA до оси х (рис. 2.1.1).

 Полярным моментом инерции плоского сечения относительно некоторой точки (полюса) О называется взятая по всей его площади А сумма произведений элементарных площадок dA на квадраты их расстояний от этой точки, т.е.

  (2.2.2)

 Сумма осевых моментов инерции плоского сечения относительно двух взаимно перпендикулярных осей равна полярному моменту инерции этого сечения относительно точки пересечения указанных осей:

  . (2.2.3)

 Центробежным моментом инерции плоского сечения относительно некоторых двух взаимно перпендикулярных осей х и у называется взятая по всей его площади А сумма произведений элементарных площадок dA на их расстояния от этих осей, т.е.

  (2.2.4)

 Центробежный момент инерции плоского поперечного сечения относительно осей, из которых одна или обе совпадают с его осями симметрии, равен нулю.

 Осевые и центробежные моменты инерции плоского сечения относительно произвольных осей х1 и у1, параллельных центральным осям х и у, определяют по формулам:

  (2.2.5)

  (2.2.6)

где a, b – расстояния между осями х и х1, у и у1 показаны на рис. 2.1.2. Принимается, что х, у – центральные оси, т.е. оси, проходящие через центр тяжести О плоского сечения.

 При повороте центральных осей х, у на угол α моменты инерции можно определить из выражений

 

   (2.2.7)

  (2.2.8)

где положительное направление угла α показано на рис. 2.2.1.

 Сумма осевых моментов инерции относительно двух взаимно перпендикулярных осей сохраняет постоянную величину при повороте осей на любой угол(рис. 2.2.1), т.е.

   (2.2.9)

 Максимальные и минимальные значения осевых моментов инерции поперечного сечения называются главными моментами инерции. Оси, относительно которых осевые моменты инерции имеют экстремальные значения, называются главными осями инерции. Главные оси инерции взаимно перпендикулярны и, следовательно, из формулы (2.2.9) имеем

  (2.2.10)

 Величину главных моментов инерции определяют по формуле:

  (2.2.11)

а главные оси инерции можно построить, повернув центральные оси х, у на угол α (рис. 2.2.1):

  (2.2.12) 

 У к а з а н и я

 1. Ось максимум всегда составляет меньший угол с той из осей (у или х), относительно которой осевой момент инерции имеет большее значение.

 2. Относительно главных осей инерции центробежный момент инерции равен нулю.

 3. Взаимно перпендикулярные центральные оси, из которых одна или обе совпадают с осями симметрии, всегда являются главными осями инерции.

 4. Для фигур, имеющих более двух осей симметрии, осевые моменты инерции относительно всех центральных осей равны между собой. К таким фигурам относятся равносторонний треугольник, квадрат, круг и т.д.

Геометрическими характеристиками плоских сечений являются площадь, статические моменты плоских сечений, положение центра тяжести, моменты инерции и моменты сопротивления. Статические моменты сечений и определение центра тяжести плоских сечений

 Задача. Определить координаты центра тяжести плоского сечения в форме половины круга радиусом R

Задача. Определить статические моменты Sx, Sy сложного поперечного сечения и найти координаты его центра тяжести.

Задача. Определить осевые моменты инерции прямоугольника высотой h и шириной b относительно осей х и у

Задача. Определить статические моменты, осевые моменты инерции, центробежные моменты инерции и положение главных осей неравнополочного уголка 1208010 относительно осей х, у и относительно центральных осей хс, ус. Вычислить положение центра тяжести. Для вычислений принять b = 8 см, h = 12 см, t = 1 см

Задача. Определить величины осевых моментов инерции относительно оси х для поперечных сечений

Осевые моменты инерции плоских составных сечений Для сложных составных поперечных сечений, не содержащих осей симметрии, предлагается следующий порядок расчета. Сначала вычерчивается поперечное сечение. Случайные оси х, у ставим так, чтобы все точки поперечного сечения находились в 1-м квадранте. Каждому прокатному профилю присваивается порядковый номер. Наносим местные оси координат хi, уi, проходящие через известные центры тяжести i–го профиля. Оси хi, уi параллельны случайным осям х, у соответственно.

 Сдвигом называют деформацию, представляющую собой искажение первоначально прямого угла малого элемента бруса (рис.3.1.1) под действием касательных напряжений τ. Развитие этой деформации приводит к разрушению, называемому срезом или, применительно к древесине, скалыванием.

Задача. Рассчитать количество заклепок диаметром d = 4 мм, необходимое для соединения двух листов двумя накладками (рис. 3.1.5). Материалом для листов и заклепок служит дюралюминий, для которого Rbs = 110 МПа, Rbр = 310 МПа. Сила F = 35 кН, коэффициент условий работы соединения γb = 0,9; толщина листов и накладок t = 2 мм.


На главную