Искусство
Сопромат
Матанализ
Примеры
Ренессанс
Электротехника
Физика
Задачи

Возрождение

Расчеты
Геометрия
Лекции
АЭС
Энергетика
Начертательная
Чертеж

Рассмотрим энергетический баланс реакции деления.

Пусть Eнач = 0.025 эВ - средняя энергия теплового движения при 200 С. Тогда Eвыдел= 200 МэВ.

продукт реакции

вид получаемой энергии

E, МэВ

Кинетическая энергия осколков

тепло

167

Кинетическая энергия g

тепло

6

Кинетическая энергия n

тепло

5

Кинетическая энергия b

тепло

8

Кинетическая энергия u

энергия теряется

12

Зависимость sf(E) имеет достаточно сложный вид, поскольку на кривую E-1/2 накладывается много резонансов. Если бы характер этой зависимости описывался формулой sf(E) = E-1/2, то график зависимости f(E) = sf E1/2 для U235 в области тепловых нейтронов имел вид прямой, параллельной оси абсцисс. Однако на практике эта зависимость имеет вид, с резонансом в точке E = 0,3 эВ.

Сечения деления ядер нейтронами различных энергий можно определить по специальным таблицам.

Как видно из приведенной выше схемы, при реакции деления кроме новых ядер могут появляться g-кванты, b-частицы распада, g-кванты распада, нейтроны деления и нейтрино. С точки зрения цепной ядерной реакции наиболее важным является образование нейтронов. Среднее число появившихся в результате реакции деления нейтронов обозначают uf . Эта величина зависит от массового числа делящегося ядра и энергии взаимодействующего с ним нейтрона. образовавшиеся нейтроны обладают различной энергией (обычно от 0,5 до 15 МэВ), что характеризуется спектром нейтронов деления. Для U235 среднее значение энергии нейтронов деления равно 1.93 МэВ.

В процессе ядерной реакции могут появляться как ядра способствующие поддержанию цепной реакции (те которые испускают запаздывающий нейтрон), так и ядра, оказывающие неблагоприятное воздействие на ее ход (если они обладают большим сечением радиационного захвата).

Заканчивая рассмотрение реакции деления, нельзя не упомянуть о таком важном явлении как запаздывающие нейтроны. Те нейтроны, которые образуются не непосредственно при делении тяжелых нуклидов (мгновенные нейтроны), а в результате распада осколков называются запаздывающими нейтронами. Характеристики запаздывающих нейтронов зависят от природы осколков. Обычно запаздывающие нейтроны делят на 6 групп по следующим параметрам: T - среднее время жизни осколков, bi - доля запаздывающих нейтронов среди всех нейтронов деления, bi/b - относительная доля запаздывающих нейтронов данной группы, E - кинетическая энергия запаздывающих нейтронов.

В следующей таблице приведены характеристики запаздывающих нейтронов при делении U235

№ группы

T, сек.

bi

bi/b , %

E, МэВ

1

80.0

0.21

3.3

0.25

2

32.8

1.40

21.9

0.56

3

9.0

1.26

19.6

0.43

4

3.3

2.52

39.5

0.62

5

0.88

0.74

11.5

0.42

6

0.33

0.27

4.2

-

 

В целом:

Nзап / (Nзап + Nмгн) = b = 0.0065; Tзап » 13 сек.; Tмгн » 0.001 сек.

При делении тяжелых ядер образуется несколько свободных нейтронов. Это позволяет организовать так называемую  цепную реакцию деления, когда нейтроны, распространяясь в среде, содержащей тяжелые  элементы, могут вызвать их деление с испусканием новых свободных нейтронов. Если  среда такова, что число вновь рождающихся нейтронов увеличивается, то процесс деления лавинообразно нарастает. В случае, когда число нейтронов при последующих делениях уменьшается, цепная ядерная реакция затухает.

Для получения стационарной  цепной ядерной реакции, очевидно, необходимо создать такие условия, чтобы каждое  ядро, поглотившее нейтрон, при делении выделяло в среднем один нейтрон, идущий  на деление второго тяжелого ядра.

Ядерным реактором называется устройство, в котором осуществляется и поддерживается управляемая цепная реакция деления некоторых тяжелых ядер.

Цепная ядерная реакция в реакторе может осуществляться только  при определенном количестве делящихся ядер, которые могут делиться при любой энергии нейтронов. Из делящихся материалов важнейшим является изотоп U235, доля которого в естественном уране составляет всего 0,714 %.

Хотя U238 и делится нейтронами, энергия которых превышает 1,2 МэВ, однако самоподдерживающаяся цепная реакция  на быстрых нейтронах в естественном уране не возможна из-за высокой вероятности  неупругого взаимодействия ядер U238 с быстрыми нейтронами. При этом энергия нейтронов становится ниже пороговой энергии деления ядер U238.

Использование замедлителя  приводит к уменьшению резонансного поглощения в U238, так как нейтрон может пройти область резонансных энергий в результате столкновения с ядрами замедлителя и поглотиться  ядрами U235, Pu239, U233, сечение деления которых существенно увеличивается с уменьшением энергии нейтронов. В качестве замедлителей используют материалы с малым массовым числом и небольшим сечением поглощения (вода, графит, бериллий и др.).

Для характеристики цепной реакции деления используется величина, называемая коэффициентом размножения К. Это отношение числа нейтронов определенного  поколения к числу нейтронов предыдущего поколения. Для стационарной цепной реакции  деления К=1. Размножающаяся система (реактор), в которой К=1, называется критической. Если К>1, число нейтронов в системе увеличивается, и она в этом случае называется  надкритической. При К < 1 происходит уменьшение числа нейтронов, и система называется под критической. В стационарном состоянии реактора число вновь образующихся нейтронов равно числу нейтронов, покидающих реактор (нейтроны утечки) и поглощающихся в его пределах. В критическом реакторе присутствуют нейтроны всех энергий. Они образуют так называемый энергетический спектр нейтронов, который характеризует число нейтронов различных энергий в единице объема в любой точке реактора. Средняя энергия спектра нейтронов определяется долей замедлителя, делящихся ядер (ядра горючего) и других материалов, которые входят в состав активной зоны реактора. Если большая часть делений происходит при поглощении тепловых нейтронов, то такой реактор называется реактором на тепловых нейтронах. Энергия нейтронов в такой системе не превышает 0.2 эВ. Если большая часть делений в реакторе происходит при поглощении быстрых нейтронов, такой реактор называется реактором на быстрых нейтронах.

>

Солнечная энергетика относится к наиболее материалоёмким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение потребности в материалах, а, следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки. Пока ещё электрическая энергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. Ученые надеются, что эксперименты, которые они проводят на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы.

Ланшафтный дизайн