Художественная культура и искусство Курс лекций по истории искусства Теория машин и механизмов Математический анализ Электротехника и электроника Расчеты электрических цепей Начертательная геометрия Примеры выполнения заданий
контрольной работы
Лекции и задачи по физике Компьютерная  безопасность Информационные системы Получение электрической энергии Атомная физика
Элементы линейной алгебры Действия с матрицами Векторная алгебра Аналитическая геометрия Математический анализ Односторонние пределы Дифференциальное исчисление Ряды Фурье

Физический смысл дифференциала.

Если производная позволяет оценить скорость изменения некоторой величины, то  равен расстоянию, которое прошла бы точка за , если бы двигалась равномерно со скоростью, равной мгновенной скорости момент .

21.4. Использование дифференциала для приближенных вычислений

, то есть дифференциал по определению есть главная часть приращения функции .

, (21.5)

где  при .

Следовательно  или

, где  (21.5’)

Пример 21.3.

Пусть , где , Вычислить .

.

Итак, .

Замечание 5. В практическом вычислении производных обычно пишут не , а просто , но при этом  считают фиксированным.

21.5. Правила дифференцирования суммы, разности, произведения и частного

Теорема 21.4.

Если функции  и  дифференцируемы в точке , то сумма, разность, произведение и частное этих функций (если ) также дифференцируемы в этой точке и справедливы следующие формулы:

1) ; (21.6)

2); (21.7)

3) . (21.8)

Доказательство.

Докажем первую формулу. Пусть задано приращение  аргумента в точке и соответствующее приращение функции:

.

.

Формулы (21.7) и (21.8) доказываются аналогично

(доказать самостоятельно).

Следствие.

Пусть функция  имеет производную в точке. Тогда функция

 (где ) также имеет в этой точке производную и

, (21.9)

то есть постоянная величина выносится за знак производной.

Замечание 6. Аналогичная формула для дифференциала.

Формальным произведением, или произведение Коши рядов (1) и (2) называется сумма ряда (3) Отметим, что формальное произведение является группировкой некоторой перестановки бесконечной таблицы. Поэтому из предыдущей теоремы и теоремы о группировке сходящегося ряда вытекают следующие утверждения: 1) теорема Коши: если ряд (1) сходится абсолютно к А и ряд (2) сходится абсолютно к В, то ряд (3) сходится к ; 2) теорема Мертенса: если ряд (1) сходится абсолютно к А и ряд (2) сходится к В, то ряд (3) сходится к ; 3) теорема Абеля: если ряд (1) сходится к А и ряд (2) сходится к В, то ряд (3) сходится к .
Линейная и векторная алгебра Аналитическая геометрия