Художественная культура и искусство Курс лекций по истории искусства Теория машин и механизмов Математический анализ Электротехника и электроника Расчеты электрических цепей Начертательная геометрия Лекции и задачи по физике Компьютерная  безопасность Информационные системы Получение электрической энергии Атомная физика
Примеры выполнения заданий контрольной работы Начертательная геометрия Метод проецирования эпюра Монжа Аксонометрические проекции Тени от геометрических тел Выполнение технических чертежей

ТИПОВЫЕ ЗАДАЧИ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ИХ РЕШЕНИЮ

З а д а ч а 1. Определить натуральную длину отрезка АВ(А1В1; А2В2) и углы его наклона к плоскостям проекций (рис.1, рис.2).

 

Рис. 1 Рис. 2

Р е ш е н и е . Строим прямоугольный треугольник по двум катетам (см. рис.1). За один катет принимаем фронтальную проекцию А2В2 отрезка АВ, за другой катет – отрезок, равный разности расстояний концов отрезка до плоскости П2. В0В2 = А1А1/. Угол β - угол наклона АВ к плоскости проекций П2.

Можно найти длину отрезка АВ, строя прямоугольный треугольник не на фронтальной проекции А2В2, а на горизонтальной проекции А1В1 (рис.2). Тогда вторым катетом будет разность расстояний концов отрезка до плоскости П1. В1В0 = В2В2/. Угол α - угол наклона отрезка АВ к плоскости проекций П1.

З а д а ч а 2. На прямой l(l1, l2) от точки А(А1, А2) отложить отрезок длиной 30 мм (рис.3).

Р е ш е н и е . Выделяем на прямой l произвольный отрезок АМ и определяем его натуральную длину. Для этого строим прямоугольный треугольник по двум катетам А1М1 и М1М0 = М2М2/ .

На гипотенузе А1М0 построенного треугольника откладываем отрезок А1С0 = 30 мм. Опустив из точки С0 перпендикуляр на горизонтальную проекцию прямой, получаем горизонтальную проекцию А1С1 , а по ней и фронтальную А2С2 проекции искомого отрезка.

 Рис. 3

З а д а ч а 3. Через прямую l (l1, l2) (рис.11а) провести фронтально проецирующую плоскость ∆ (рис.4).

Рис. 4

 Р е ш е н и е . Признаком принадлежности прямой l фронтально проецирующей плоскости является принадлежность (совпадение) фронтальной проекции l2 , прямой  l с фронтальной проекцией ∆2 плоскости ∆ ,

т.е. если l Ì  ∆ Û l2 ≡ ∆2 (рис.4б).

З а д а ч а 4. Построить проекции линии пересечения двух плоскостей Г(АВС) и ∆  ( ∆ 2 ) (рис.5а).

Рис. 5

Р е ш е н и е. Плоскость ∆ ( ∆ 2) – фронтально проецирующая. Фронтальная проекция плоскости ∆ обладает собирательным свойством, поэтому фронтальная проекция N2M2 искомой линии пересечения совпадает с ∆ 2. Пользуясь условием, что искомая прямая MN принадлежит и плоскости Г (АВС), находим по фронтальной проекции её горизонтальную проекцию M1N1 (рис.5б).

З а д а ч а 5. Построить проекции точки пересечения прямой l (l1, l2) с плоскостью Г(АВС). Определить видимость прямой l (l1, l2) относительно плоскости Г (рис.6а).

Р е ш е н и е . Для решения задачи следует последовательно выполнить следующие три операции (рис.6б).

1-я операция. Через прямую l провести фронтально проецирующую плоскость ∆ (∆ 2 ) (см. задачу 3).

2-я операция. Построить проекции линии пересечения обеих плоскостей – данной Г и вспомогательной ∆, т.е. MN (M1N1; M2N2) (см. задачу 4).

3-я операция. В пересечении проекций данной прямой l и построенной MN отметить проекции (К1, К2) искомой точки.

Рис. 6

Найдя точку пересечения, перейти к определению видимости прямой l .

Для определения видимости прямой l на горизонтальной проекции (вид сверху) рассматриваем  две горизонтально конкурирующие точки 1 Î АВ и 2 Πl (11 ≡ 21). По фронтальной проекции видим, что точка 1 лежит по отношению к плоскости П1 выше, чем точка 2. Это значит, что сверху видимой является точка 1, а точка 2 закрыта ею. Следовательно, на виде сверху отрезок прямой l , на котором лежит точка 2, является невидимым. На фронтальной проекции видимость можно определить, например, при помощи фронтально конкурирующих точек N Î ВС и 3 Î  l . Сравниваем расстояние их по отношению к плоскости П2 . Сравнение показывает, что точка 3 прямой l , а следовательно, отрезок 3К, спереди не виден.

З а д а ч а 6. В плоскости Г (l ∩ m) провести горизонталь h (h1, h2) и фронталь  f ( f1; f2) (рис.7а).

Рис. 7

Р е ш е н и е . Известно, что фронтальная проекция h2 горизонтали h всегда параллельна оси XO. Поэтому построение горизонтали начинаем с проведения h2 ∥ XO (рис.7б). Горизонтальную проекцию находим из условия принадлежности горизонтали  h плоскости Г. Фронтальная проекция горизонтали пересекает фронтальные проекции данных прямых l2 и m2 в точках 12 и 22 , которым соответствуют горизонтальные проекции 11 и 21. Через них и пройдет горизонтальная проекция h1 искомой горизонтали  h . На (рис.7б) в плоскости Г построена и фронталь f (f1; f2). Это построение выполнено аналогично построению горизонтали.

З а д а ч а 7. Даны плоскость  Г (l ‌ || ‌ m) и точка D(D1; D2).

Опустить перпендикуляр из точки на эту плоскость (рис.8).

Известно, что если прямая перпендикулярна плоскости, необходимо, чтобы горизонтальная проекция прямой была перпендикулярна горизонтальной проекции горизонтали, а фронтальная проекция – фронтальной проекции фронтали плоскости.

Р е ш е н и е . Проводим горизонталь h (h1; h2 ) и фронталь f ( f1; f2) (см. задачу 6). Затем проводим проекции перпендикуляра: горизонтальную  n1 – через D1 перпендикулярно горизонтальной проекции горизонтали h1 , и фронтальную  n2 – через D2 перпендикулярно проекции фронтали f2 .

Рис. 8

Пересечение прямой линии с поверхностью. Пересечение поверхностей плоскостью. Алгоpитм построения линии среза и развертки поверхности. Построение сечений поверхностей плоскостью общего положения, построение точек пересечения прямой с поверхностями вращения. Построение сечений поверхностей плоскостью общего положения. Построение линий среза. Развертка конуса и цилиндра.
Изучение начертательной геометрии и черчения