Искусство
Сопромат
Матанализ
Примеры
Ренессанс
Электротехника
Физика
Задачи

Возрождение

Расчеты
Геометрия
Лекции
АЭС
Энергетика
Начертательная
Чертеж
http://xprostitutki-gelendzhika.com/ - шикарные проститутки Геленджика | Самые неподражаемые шлюхи Ярославля на сайте 1prostitutki-yaroslavlya.com | Привлекательные дешевые проститутки Твери

Методы преобразования комплексного чертежа (эпюра Монжа)

Четыре основных задачи на преобразование

При разработке чертежей объектов необходимо давать наиболее выгодное изображение объекта в целом или его исследуемых элементов. Этого можно достичь, если прямые линии, плоские фигуры (основания, грани, ребра, оси) геометрических тел находятся в частном положении, чего можно достигнуть путем построения новых дополнительных проекций, исходя из двух заданных. Эти дополнительные проекции дают либо вырожденные проекции отдельных элементов, либо эти элементы в натуральную величину. Так вот построение дополнительных проекций называют преобразованием эпюра (чертежа).

Четыре основных задачи на преобразования.

Определение величины отрезка АВ общего положения;

Приведение отрезка прямой общего положения в проецирующее положение;

Приведение плоской фигуры общего положение в проецирующее положение;

Определение натурального вида плоской фигуры.

Проекции и их свойства Учебная дисциплина «Начертательная геометрии и инженерная графика» даёт студентам знания, которые необходимы им для общения с техническими специалистами на специальном графическом языке. Дисциплина включает следующие разделы: начертательную геометрию, машиностроительное черчение (инженерную графику) и основы компьютерной графики.

Кроме указанных выше задач указанным методом можно определить расстояние между двумя скрещивающимися прямыми.

Преобразование эпюра может быть выполнено следующими методами:

заменой плоскостей проекций;

плоскопараллельным перемещением;

вращением вокруг линий уровня;

совмещением.

Рассмотрим эти методы подробно.

Метод замены (перемены) плоскостей проекций

Этот метод широко применяют во всех отраслях машиностроения и приборостроения. Сущность этого метода заключается в следующем: положение точек, линий, плоских фигур, поверхностей в пространстве не изменяется, а система П1/П2 заменяется (дополняется) плоскостями, образующими с П1 или П2 (или между собой) системы двух взаимно перпендикулярных плоскостей, принимаемых за плоскости проекций.

Каждая новая система выбирается так, чтобы по отношению к заданным геометрическим элементам она заняла положение наиболее удобное для выполнения требуемого построения.

В ряде случаев для получения системы плоскостей проекций, разрешающей поставленную задачу, бывает достаточно ввести (заменить) только одну плоскость, например П4П1 или П5П2 при этом плоскость П4 окажется горизонтально-проецирующей, а плоскость П5 – фронтально-проецирующей. Если введение одной плоскости П4 или П5 не позволяет решить задачу, то прибегают к последовательному дополнению основной системы плоскостей проекций новыми (П6, П7 и т.д.).

На рис. 4.1. показано преобразование проекций точки А из системы П2/П1 в систему П4/П1, в которой вместо плоскости П2 введена новая плоскость П4, а плоскость П1 осталась неизменной. При этом плоскость П4 перпендикулярна плоскости П1. В системе П4/П1 горизонтальная проекция А1 точки А осталась неизменной.

Рис. 4.1

Проекция А4 точки А на плоскость П4 находиться на плоскости П1 на том же расстоянии (!!!), что и проекция А2 точки А на плоскость П2. это условие позволяет легко строить проекцию точки на новой плоскости проекций (рис. 4.2).

Рис. 4.2

Для этого в новой системе (П1/П4) из проекции точки (А1) на сохраняющейся плоскости проекций проводят линию связи, перпендикулярную новой оси проекций (П4/П1). На этой линии связи отмечают расстояние от оси П4/П1 до проекции А4 точки А на новой плоскости проекций П4, равное расстоянию от преобразуемой проекции А2 точки до оси П2/П1 А4*2 = А2 *1.

При введении новой плоскости проекций, перпендикулярной фронтальной плоскости проекций (например, плоскости П4 на рис. 4.3), расстояние от проекции (В4) точки В до новой оси проекций (П4/П2) равно расстоянию от горизонтальной проекции (В1) до оси П2/П1 В1*1 = В4*2.

Рис. 4.3

В дальнейшем при введении новой плоскости проекций ось проекций можно обозначать в виде дроби, черта которой лежит на оси; каждую букву при этом пишут как бы на «своей» плоскости.

Определение длины отрезка АВ общего положения (рис. 4.4)

Заменим плоскость П2 на П4АВ (ось П1/П4 А1В1). Расстояния от оси П1/П4 до А4 и В4 равны расстояниям от А2 и В2 до оси П2/П1 соответственно А4*2 = А2*1. Одновременно с определением действительной величины отрезка АВ определена величина  угла наклона к плоскости П1.

Рис. 4.4

Приведение отрезка прямой АВ общего положения в проецирующее положение (в продолжение предыдущего примера).

На том же рис. 4.4 новая система плоскостей проекций П4/П1 относительно отрезка АВ находиться в частном положении (П4АВ). Введем еще одну плоскость проекций П5П4 и отрезку АВ (ось проекций П4/П5А4В4). Относительно этой плоскости проекций П5 отрезок АВ занимает проецирующее положение (А5 = В5, А1*2 = А5*3).

Необходимо заметить, сто для преобразования эпюра отрезка общего положения в проецирующее требуется введение двух новых плоскостей проекции последовательно, первой – параллельно отрезку, второй – перпендикулярно ему. При этом должны выполняться условия перпендикулярности исходных и новых плоскостей проекций, а также сохранения координат проекций точек на заменяемых плоскостях проекций.

Приведение плоской фигуры общего положения в проецирующее положение, а также определение её натуральной величины.

На первом этапе задачу решают с помощью одной из линий уровня, например, горизонтали с проекциями А2F2, A1F1 (рис. 4.5). Новая плоскость проекций П4 в этом случае выбрана перпендикулярно горизонтали AF (ось П1/П4A1F1) и соответственно перпендикулярно плоскости П1.

Рис. 4.5

Откладывая на линиях связи от оси П1/П4 координаты вершин А, В, и С с плоскости П2 на плоскость П4, получим проекции указанных вершин (А4, В4 и С4), которые будут расположены на одной линии (т.е. плоскость АВСП4).

На втором этапе решения задачи (определить натуральную величину треугольника АВС) вводим новую плоскость проекций П5П4 и параллельно плоскости треугольника АВС (т.е. его проекции А4В4С4). Проведя линии связи от А4, В4 и С4 перпендикулярно оси П4/П5 и отложив на них от этой оси координаты вершин А, В и С с горизонтальной проекции треугольника АВС на плоскости П5 (А5, В5 и С5), получим натуральную величину треугольника АВС и углов при его вершинах.

Определение расстояния между двумя скрещивающимися прямыми.

Это расстояние выражается длиной общего перпендикуляра MN к заданным прямым АВ и СD. (рис. 4.6)

Рис. 4.6

Для решения этой задачи необходимо, чтобы одна из этих прямых располагалась перпендикулярно плоскости проекций. Для этого необходимо последовательно ввести две новые плоскости проекций (П4 и П5) для превращения одной из прямых (например АВ) сначала в линию уровня (с помощью плоскости П4), а затем в проецирующую ( с помощью плоскости П5), после чего опустить перпендикуляр из проекции слившихся в одну точек А и В (А5 = В5) на проекцию С5D5 (M5N5 – действительно искомое расстояние).

Алгоритм построения линии пеpесечения двух плоскостей, пpямой и плоскости. Общие и частные случаи. Методика решения задач на пеpесечение пpямых и плоскостей. Взаимная паpаллельность и пеpпендикуляpность пpямых и плоскостей. Свойства параллельности прямой и плоскости. Свойства параллельности плоскостей. Прямая, перпендикулярная плоскости, если плоскость задана фигурой, следами. Условие перпендикулярности прямой и плоскости, плоскостей

Ланшафтный дизайн