Искусство
Сопромат
Матанализ
Примеры
Ренессанс
Электротехника
Физика
Задачи

Возрождение

Расчеты
Геометрия
Лекции
АЭС
Энергетика
Начертательная
Чертеж

Примеры позиционных и метрических задач на плоскость

Пример 1. В плоскости, заданной треугольником АВС, построить точку D (рис. 3.21).

Решение.

1. Необходимо в данной плоскости провести прямую. Зададим для этого две точки, заведомо лежащие в данной плоскости. Одной из таких точек может быть вершина А(А1;А2) треугольника. Вторую точку Е(Е1;Е2) зададим на стороне ВС. Через одноименные проекции А1 и Е1, А2 и Е2 проведем прямые. Эти прямые являются проекциями прямой. Лежащей в данной плоскости.

2. На построенной прямой АЕ зададим точку D. Для этого построим D1А1Е1 и D2А2Е2. Точка D лежит в заданной плоскости, т.к.к она принадлежит прямой АЕ, лежащей в этой плоскости

К плоскостям частного положения относятся плоскости перпендикулярные и параллельные плоскостям проекций.

Рис. 3.21

Пример 2. Построить линию наибольшего уклона плоскости, заданной параллельными прямыми а(а1; а2) и b(b1; b2) и определить угол  между этой плоскостью и горизонтальной плоскостью проекций (рис. 3.22)

Рис. 3.22

Решение

Проведем горизонталь h данной плоскости (см. гл.3 рис. 3.3, в). Проекциями этой горизонтали будут прямые h1 и h2.

Проведем прямую, перпендикулярную к горизонтальной проекции горизонтали, и отметим точки С1 - пересечения её с h1 D1 – са1. Прямая С1D1 является горизонтальной проекцией линии наибольшего ската.

Построим фронтальные проекции С2 и D2. Для этого из С1 и D1 проведем вертикальные линии связи до пересечения соответственно с h2 и а2.

Прямая, соединяющая точки С2 и D2, является фронтальной проекцией линии наибольшего уклона.

Угол  определяем из прямоугольного треугольника D1C1E0, построенного на С 1D1 как на катете. Второй катет D0D1 = E2D2. Искомый угол =D0C1D1

Пример 3. Задана плоскость пересекающимися прямыми АВ и CD. Определить лежит ли прямая KL в этой плоскости.

Рис. 3.23

Решение.

1. Обозначим точки пересечения фронтальных проекций прямых АВ и KL через 12 и прямых CD и KL через 22.

2. Строим их горизонтальные проекции – точки 11 и 22 на горизонтальной проекции (K1L1) прямой KL. Из построения видно, что точки 1(1112) и 2(2122) прямая KL на заданной плоскости не лежат. Следовательно, прямая KL в плоскости не лежит. Решение этой задачи можно начать и с пересечения горизонтальных проекций.

Пример 4. В плоскости, заданной двумя параллельными прямыми АВ и CD, провести фронталь на расстоянии 15 мм от фронтальной плоскости проекций (рис. 3.24)

Рис. 3.24

Решение. Проводим на расстоянии 15 мм от оси проекций параллельную ей горизонтальную проекцию (11-22) фронтали, которая пересекает прямые А1В1 и C1D1 в точках 11 и 22.

Затем находим точки 11 и 22 на прямых А2В2 и C2D2 и проводим через них фронтальную проекцию (1222) фронтали.

Алгоритм построения линии пеpесечения двух плоскостей, пpямой и плоскости. Общие и частные случаи. Методика решения задач на пеpесечение пpямых и плоскостей. Взаимная паpаллельность и пеpпендикуляpность пpямых и плоскостей. Свойства параллельности прямой и плоскости. Свойства параллельности плоскостей. Прямая, перпендикулярная плоскости, если плоскость задана фигурой, следами. Условие перпендикулярности прямой и плоскости, плоскостей

Ланшафтный дизайн