Художественная культура и искусство Курс лекций по истории искусства Математический анализ Электротехника и электроника Расчеты электрических цепей Начертательная геометрия Примеры выполнения заданий
контрольной работы
Лекции и задачи по физике Компьютерная  безопасность Информационные системы Получение электрической энергии Атомная физика
Теория машин и механизмов Классификация зубчатых передач Червячная зубчатая передача Статическая и динамическая балансировка роторов Эффективность виброзащиты Коэффициент полезного действия Повышение надежности машин

Классификация зубчатых передач

Бытующие в технической литературе наименования различных типов зубчатых передач получили широкое распространение, но зачастую недостаточно четки. С другой стороны, многие предлагаемые системы классификации страдают излишней академичностью и не получили признания. В связи с этим наиболее правильным будет принять компромиссное решение.

Приведенная на рис. 1 классификация зубчатых передач представляет часть общей классификации, предложенной В. А. Гавриленко, и включает лишь те виды зубчатых передач, которые применяются в промышленности или достаточно перспективны. Наряду с терминологией, подчиненной схеме, приводятся названия передач, получившие распространение в инженерной практике.

Передачи внешнего зацепления

Характерной особенностью кинематики передач с внешним зацеплением является то, что ведущее и ведомое звенья имеют разное направление вращения.

Цилиндрические эвольвентные зубчатые передачи с линейным касанием

Прямозубые цилиндрические колеса показаны на рис. 2. Зубья таких колес параллельны оси и имеют одинаковый профиль от одного до другого торца. Нефланкированные эвольвентные прямозубые колеса применяются обычно при окружных скоростях до 5…7 м/с. При больших окружных скоростях для спокойной работы передачи требуется фланкировать зубья или изготавливать их с повышенной точностью. Как правило, в этом случае более рентабельным будет переход на косозубую передачу.

Косозубые эвольвентные цилиндрические колеса (рис. 3) отличаются от прямозубых тем, что направление зубьев составляет некоторый угол с образующей делительного цилиндра. Вследствие более плавной работы косозубые колеса могут быть использованы при более высоких окружных скоростях. Недостатком косозубых колес является то, что в зацеплении возникает осевая составляющая передаваемой зубьями силы, воспринимаемая одной из опор каждого вала, чего нет в прямозубых колесах.

Рис. 1. Классификация зубчатых передач

Рис. 2. Прямозубые цилиндрические колеса

Рис. 3. Косозубая цилиндрическая шестерня

Шевронные эвольвентные цилиндрические колеса показаны на рис. 4 и 5. Правые и левые половины шевронных зубчатых колес имеют разное направление зубьев, вследствие чего осевая составляющая в шевронных передачах сводится к силе трения в опорах, возникающей при незначительных осевых перемещениях («игре») шевронных зубчатых колес во время работы. Шевронные колеса применяются обычно для мощных зубчатых передач, работающих со средними и высокими окружными скоростями. Различают шевронные зубчатые колеса с дорожкой (канавкой) в середине колеса (см. рис. 4) для выхода инструмента (червячной фрезы) и без дорожки (см. рис. 5), нарезаемые долбяком или гребенкой со специальной формой заточки. Шеврон без дорожки обладает высокой прочностью зубьев на излом, но применяется реже, чем шеврон с дорожкой.

Зубчатые передачи с зацеплением Новикова (рис. 6) характеризуются более высокой, чем у эвольвентной зубчатой передачи, контактной прочностью. Передачи Новикова могут выполняться с параллельными, пересекающимися и перекрещивающимися осями, однако, в основном применяются передачи с параллельными осями. Профили зубьев передачи Новикова очерчены дугами окружностей (обычно в нормальном сечении), причем выпуклые зубья одного зубчатого колеса (обычно шестерни) контактируют с вогнутыми зубьями другого. Без нагрузки рабочие поверхности зубьев касаются в точке. Под нагрузкой точка превращается в контактную площадку, как у эвольвентных зубчатых колес с бочкообразными зубьями.

Линией зацепления является прямая, расположенная параллельно осям зубчатых колес. Соприкосновение зубьев парных зубчатых колес в каждой торцовой плоскости происходит только в одной точке, в связи с чем передачи Новикова выполняются только с непрямыми (косыми или шевронными) зубьями и осевым коэффициентом перекрытия, большим единицы. При работе контактная площадка перемещается вдоль зуба, что создает благоприятные условия для возникновения между зубьями устойчивой масляной пленки. Потери на трение в зацеплении Новикова меньше, чем в эвольвентной передаче, стойкость в отношении абразивного изнашивания –– меньшая.

Определение перемещений в балках при прямом изгибе. Общие положения. Дифференциальное уравнение изогнутой оси балки. Метод непосредственного интегрирования. Метод начальных параметров. Определение усилий, напряжений и деформаций в элементах, работающих на растяжение и сжатие
Трение во вращательной паре