Художественная культура и искусство Курс лекций по истории искусства Теория машин и механизмов Математический анализ Электротехника и электроника Расчеты электрических цепей Начертательная геометрия Примеры выполнения заданий
контрольной работы
Лекции и задачи по физике Компьютерная  безопасность Информационные системы Получение электрической энергии Атомная физика
Испытание на сжатие Испытание на кручение Испытание материалов на выносливость Расчет на жесткость Расчет на прочность Понятие о напряжениях Объёмные деформации

Плоский изгиб

Изгибом называется вид нагружения бруса, при котором к нему прикладывается момент, лежащий в плоскости проходящей через продольную ось. В поперечных сечениях бруса возникают изгибающие моменты.

Изгиб называется плоским, если плоскость действия момента проходит через главную центральную ось инерции сечения.

Если изгибающий момент Mx является единственным внутренним силовым фактором, то такой изгиб называется чистым. При наличии поперечной силы  изгиб называется поперечным.

Брус, работающий при изгибе, называется балкой.

Построение эпюр поперечной силы и изгибающего момента

Рассмотрим балку длиной l защемленную одним концом и находящуюся под действием сосредоточенной силы Р (рис.6.1). Пусть для определенности Р=4 кН, l = 2 м.

Определим внутренние силовые факторы, возникающие в балке. Воспользуемся методом сечением.

Рассечем балку поперечным сечением в произвольном месте.

Отбросим правую часть.

Заменим ее действие внутренними усилиями N - вдоль оси z, Qy - вдоль оси y и моментом Mx – в плоскости осей yz вокруг оси х. На рис.6.2 в соответствии с принятым правилом знаков показаны положительные направления внутренних силовых факторов.

Уравновесим отсеченную часть. Запишем уравнения статического равновесия, получим

Из первого уравнения видно, что нормальная сила N при изгибе равна нулю, далее не будем ее определять.

Построим эпюры поперечной силы Qy и изгибающего момента Mx вдоль длины балки.

Поперечная сила постоянна по всей длине балки и равна Qy = P = 4 кН. Отложим на графике линию параллельную оси z.

Изгибающий момент Мх изменяется в зависимости от расстояния z. Вычислим его значение в двух точках: в начале z = 0 и в конце балки z = l = 2 м.

z = 0, Мх = 0;

z = 2 м, Мх = 8 кНм.

Построим по точкам график Мх.

Построение эпюр поперечной силы Qy и изгибающего момента Mx является одним из основных этапов при расчете конструкций на изгиб. По эпюрам Qy и Mx определяется опасное сечение, т.е. сечение в котором может произойти разрушение.

Опасным сечением называется сечение, в котором изгибающий момент достигает наибольшего по модулю значения .

В некоторых случаях опасным сечением может быть также сечение, где наибольшего значения достигает поперечная сила . В данном случае опасным является место закрепления балки.

Рассмотрим примеры построения эпюр Qy и Mx.

Пример 1

Для балки, изображенной на рис.6.2 построить эпюры поперечной силы Qy и изгибающего момента Mx и определить опасное сечение. Пусть величины P = 10 кН, a = 2 м, b = 3 м.

Решение.

Определим реакции опор. Запишем уравнения равновесия статики. Из этих уравнений получим:

   кН.

   кН.

Для проверки правильности определения реакции опор используем уравнение:

.

6 – 10 + 4 = 0,

0 º 0.

Значит, реакции определены правильно.

Определим внутренние усилия, возникающие в материале балки. Следует рассмотреть два участка, границами участков являются точки приложения сосредоточенной силы Р и опорных реакций RA и RB. Обозначим границы участков буквами А, С и В.

Рассечем первый участок АС.

Отбросим правую часть, т.к. она сложнее.

Заменим отброшенную часть внутренними усилиями Qy и Mx.

Уравновесим отсеченную часть, запишем уравнения равновесия:

Вычислим Qy и Mx в граничных точках участка:

при z1 = 0, Qy1 = RA = 6 кН, Mx1 = 0;

при z1 = а = 2 м, Qy1 = RA = 6 кН, Mx1 = 12 кНм.

Рассмотрим второй участок СВ. Рассечем его и отбросим левую часть, заменим её внутренними силами. Из уравнений равновесия получим

Вычислим Qy и Mx в граничных точках участка:

при z2 = 0, Qy2 = - RВ = - 4 кН, Mx2 = 0;

при z2 = а = 3 м, Qy2 = - RВ = - 4 кН, Mx2 = 12 кНм.

Построим эпюры Qy и Mx.

По полученным эпюрам определим опасное сечение, оно проходит через точку приложения силы P, так как Mx достигает там наибольшего значения.

  Пример 2

Для представленной на рис.6.3 балки построить эпюры внутренних сил, найти опасные сечения.

Решение.

Определим реакции опор. Заменим распределенную нагрузку q её равнодействующей G=2qa, приложим G в середине участка АС (рис.6.4).

Запишем уравнение равновесия.

;

;

.

Отсюда находим:

.

Выполним проверку правильности определения реакций опор.

;

;

0 º 0.

 Используя метод сечений, рассмотрим сечения участков балки (рис.6.5).

1 участок:

;

.

  .

Вычислим Qy1 и Mx2 на границах участка.

z=0, , ;

z=2a, ;

2 участок:

;

  .

;

  .

На границах участка получим

z=0, , ;

z=a, , ;

 Построим эпюры Qy и Mx на участках. Из выражений для внутренних усилий следует, что Qy, эпюра является прямолинейной как на первом, так и на втором участках, в то время как эпюра Мх на первом участке квадратичная парабола, а на втором прямая линия. Для построения эпюры Мх на первом участке следует либо вычислить её значения в нескольких точках, либо исследовать функцию на экстремум и определить его.

 Как известно из курса математического анализа, для определения экстремума функции следует определить ее первую производную, приравняв ее нулю найти аргумент, затем его значение подставить в функцию и вычислить экстремум функции.

,

,

,

.

  Отложим значение Мх max и построим эпюру изгибающего момента на первом участке по трем точкам (рис.6.5).

 По эпюре находим опасное сечение. Им является сечение, где .

Деформация – изменение взаимного расположения частиц тела, как правило, вызывающее изменение его размеров и формы. Упругость – свойство тел деформироваться под нагрузкой и затем, после устранения сил восстанавливать свое первоначальное состояние. Часть деформации, которая исчезает после снятия нагрузки, называется упругой, а та часть, которая остается – остаточной (пластической) деформацией. Пластичность – свойство материалов под действием внешних нагрузок изменять, не разрушаясь, свою форму и размеры и сохранять остаточные деформации после снятия этих нагрузок. Прочность – способность материала противостоять нагрузке, не разрушаясь. Твердость – способность материала противостоять внедрению в него другого материала.
Содержание и задачи курса сопротивление материалов