Художественная культура и искусство Курс лекций по истории искусства Теория машин и механизмов Математический анализ Расчеты электрических цепей Начертательная геометрия Примеры выполнения заданий
контрольной работы
Лекции и задачи по физике Компьютерная  безопасность Информационные системы Получение электрической энергии Атомная физика
Электротехника и электроника Закон Ома Второй закон Кирхгоф Расчет смешанной цепи с одной э.д.с. Векторная диаграмма Соединение фаз звездой Соединение фаз треугольником Асинхронный электродвигатель Полупроводниковые диоды

Согласно второму закону Кирхгофа, во всяком замкнутом контуре алгебраическая сумма э.д.с. равна алгебраической сумме падений напряжения на всех сопротивлениях, входящих в этот контур:

S E = SIr  (1.11)

При обходе замкнутого контура по часовой стрелке (или против стрелки) э.д.с. и токи, направления которых совпадают с принятым направлением обхода, следует считать положительными, а направленные встречно, — отрицательными.

Для примера рассмотрим замкнутый контур ADFMNA (рис. 1.6). При указанных на рисунке направлениях токов и э.д.с. принятом обходе этого контура по часовой стрелке уравнение второго закона Кирхгофа принимает следующий вид:

-E5 + E4 E3 = -I7 r11 – I6 r5 I8 (r13 r4 r3 +r12) 

В некоторых расчетах оказывается более удобным пользоваться уравнением второго закона Кирхгофа, записанным как

S E = S U + SIr (1.12)

Расчёт линейных электрических цепей при гармоническом (синусоидальном) воздействии

Здесь часть слагаемых Ir, относящаяся к определенным участкам контура, заменена напряжениями U на этих участках.

Цепи с последовательным соединением. Если электрическая цепь состоит из нескольких последовательно соединенных участков сопротивлениями r1, r2, r3, r4 (рис. 1.7), то через все участки протекает один и тот же ток I.

При отсутствии на участках цепи собственных э.д.с.> общее напряжение U, приложенное к зажимам всей цепи, равно сумме падений напряжения на отдельных элементах цепи (второй закон Кирхгофа):

U + U1 U2 U3 U4 (1.13)

U = I r1 + I r2 r3 r4 = I (r1 r4) (1.14)

Из этого выражения следует, что общее сопротивление r равно сумме сопротивлений всех последовательно соединенных элементов цепи, а напряжения между элементами распределяются прямо пропорционально их сопротивлениям.

Если уравнение (1.14) умножить на I, то получим

U = I2 r1 + I2 r2 r3 r4  (1.15)

P = P1 + P2 P3 P4 (1.16)

т. е. общая мощность Р, потребляемая цепью, равна сумме мощностей, потребляемых отдельными ее элементами.

Рис. 1.8 Разветвленная цепь постоянного тока

Цепи с параллельным соединением. При параллельном соединении электроприемников (рис. 1.8) все они находятся под одинаковым напряжением U.

Обозначим сопротивления отдельных электроприемников через r1, r2, r3, их проводимости - соответственно g1, g2, g3, а токи—через I1, I2, I3.

Общий ток I в неразветвленной части цепи равен сумме токов, потребляемых отдельными электроприемниками:

 (1.17)

I = U g1 + U g2 g3 = U (g1 g3) = U gэ (1.18)

Эквивалентная проводимость разветвленной цепи равна сумме проводимостей отдельных ее ветвей:

 (1.19)

g = g1 + g2 g3 (1.9а)

В частном случае, когда цепь содержит два параллельно включенных сопротивления r1 и r2, эквивалентное сопротивление rэ удобно определять по формуле, вытекающей из выражения (1.19):

 (1.20)

Умножив уравнения (1.17) на U, получим

 (1.21)

P1 = P1 + P2 P3 (1.22)

Из изложенного следует что мощность, расходуемая в разветвленной цепи, равна сумме мощностей, потребляемых отдельными приемниками или одним эквивалентным приемником. Проводимость эквивалентного приемника проводимостей всех параллельно включенных электроприемников. Токи этих приемниках так же, как и мощности, распределяются всегда пропорционально проводимостям.

При включении нескольких генераторов для совместной параллельной работы (рис. 1.9) они соединяются между собой одноименными зажимами, а к общим узловым точкам присоединяется внешняя цепь (нагрузка).

Рис. 1.9 Параллельна работа источника питания

При этом э.д.с. всех генераторов будут иметь одинаковое направление относительно их общей нагрузки.

 Источниками электрической энергии служат устройства, в которых происходит преобразование различных видов энергии в электрическую. По виду преобра­зуемой энергии источники электрической энергии могут быть разделены на химические и физические. Химическими источниками электрической энергии принято называть устройства, вырабатывающие энергию за счет окислительно-восстановительного процесса между химическими реагентами. К химическим источникам относятся первичные (гальванические элементы и батареи), вторичные (аккумуляторы и аккумуляторные батареи) и резервные (при хранении элек­тролит никогда гальванически не связан с электродами), а также электрохимические генераторы (топливные элементы).
Активная мощность трехфазной системы