Художественная культура и искусство Курс лекций по истории искусства Теория машин и механизмов Математический анализ Расчеты электрических цепей Начертательная геометрия Примеры выполнения заданий
контрольной работы
Лекции и задачи по физике Компьютерная  безопасность Информационные системы Получение электрической энергии Атомная физика
Электротехника и электроника Закон Ома Второй закон Кирхгоф Расчет смешанной цепи с одной э.д.с. Векторная диаграмма Соединение фаз звездой Соединение фаз треугольником Асинхронный электродвигатель Полупроводниковые диоды

Источники электромагнитного поля

Источниками ЭМП являются электрические заряды, электрические диполи, движущиеся электрические заряды, электрические токи, магнитные диполи.

Понятия электрического заряда и электрического тока даны в курсе физики. Электрические токи бывают трех типов:

1. Токи проводимости.

2. Токи смещения.

3. Токи переноса.

Ток проводимости - скорость прохождения подвижных зарядов электропроводящего тела через некоторую поверхность.

image012.gif.

Ток смещения - скорость изменения потока вектора электрического смещения через некоторую поверхность.

image013.gif.

Ток переноса характеризуется следующим выражением

image014.gif

где v - скорость переноса тел через поверхность S; n - вектор единичной нормали к поверхности; image015.gif- линейная плотность заряда тел, пролетающих через поверхность, в направлении нормали; ρ - объемная плотность электрического заряда; ρv - плотность тока переноса.

Электрическим диполем называется пара точечных зарядов +q и - q, находящихся на расстоянии l друг от друга (рис. 1).

image016.gif

Рис. 1.

Точечный электрический диполь характеризуется вектором электрического дипольного момента:

image017.gif.

Магнитным диполем называется плоский контур с электрическим током I. Магнитный диполь характеризуется вектором магнитного дипольного момента

image018.gif,

где S - вектор площади плоской поверхности, натянутой на контур с током. Вектор S направлен перпендикулярно этой плоской поверхности, причем, если смотреть из конца вектора S , то движение по контуру в направлении, совпадающим с направлением тока, будет происходить против часовой стрелки. Это означает, что направление вектора дипольного магнитного момента связано с направлением тока по правилу правого винта.

Атомы и молекулы вещества представляют собой электрические и магнитные диполи, поэтому каждую точку вещественного типа в ЭМП можно характеризовать объемной плотностью электрического и магнитного дипольного момента:

P - электрическая поляризованность вещества:

image019.gif,

M - намагниченность вещества:

image020.gif.

Электрическая поляризованность вещества - это векторная величина, равная объемной плотности электрического дипольного момента в некоторой точке вещественного тела.

Намагниченность вещества - это векторная величина, равная объемной плотности магнитного дипольного момента в некоторой точке вещественного тела.

Электрическое смещение - это векторная величина, которая для любой точки наблюдения вне зависимости от того, находится ли она в вакууме или в веществе, определяется из соотношения:

image021.gif(для вакуума или вещества),

image006.gif(только для вакуума).

Напряженность магнитного поля - векторная величина, которая для любой точки наблюдения вне зависимости от того находится ли она в вакууме или в веществе определяется из соотношения:

image022.gif,

где напряженность магнитного поля измеряется в А/м.

Кроме поляризованности и намагниченности существуют другие объемно-распределенные источники ЭМП:

- объемная плотность электрического заряда image023.gif; image024.gif,

где объемная плотность электрического заряда измеряется в Кл/м3;

- вектор плотности электрического тока, нормальная составляющая которого равна

image025.gif.

В более общем случае ток, протекающий через незамкнутую поверхность S, равен потоку вектора плотности тока через эту поверхность:

image026.gif,

где вектор плотности электрического тока измеряется в А/м2.

 В электроэнергетике используют в основном переменный ток. В настоящее время почти вся электрическая энергия вырабатывается в виде энергии переменного тока. Основное преимущество переменного тока по сравнению с постоянным током заключается в возможности просто и с минимальными потерями преобразовывать напряжение при передаче энергии. Генераторы и двигатели перемен­ного тока имеют более простое устройство, надежней в работе и проще в эксплуатации по сравнению с машинами постоянного тока.
Активная мощность трехфазной системы