Художественная культура и искусство Курс лекций по истории искусства Теория машин и механизмов Математический анализ Электротехника и электроника Расчеты электрических цепей Начертательная геометрия Примеры выполнения заданий
контрольной работы
Лекции и задачи по физике Компьютерная  безопасность Информационные системы Получение электрической энергии Атомная физика
Молекулярная физика и термодинамика Элементы квантовой статистики Электрические свойства кристаллов Элементы ядерной физики Атомная физика Закон радиоактивного распада Примеры решения задач физика

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ

Основные формулы

Гармонические колебания происходят по закону:

x = A cos(ωt + φ0),

где  x – смещение частицы от положения равновесия, А – амплитуда колебаний, ω – круговая частота, φ0 – начальная фаза, t – время.

Период колебаний  T = .

Скорость колеблющейся частицы:

υ =  = – A ω sin (ωt + φ0),

ускорение  a =  = – Aω2 cos (ωt + φ0).

Кинетическая энергия частицы, совершающей колебательное движение: Ek =  =  sin2(ωt + φ0).

Потенциальная энергия:

En =  cos2(ωt + φ0).

Периоды колебаний маятников

– пружинного T = ,

где m – масса груза, k – коэффициент жесткости пружины,

– математического T = ,

где l – длина подвеса, g – ускорение свободного падения,

– физического T = ,

где I – момент инерции маятника относительно оси, проходящей через точку подвеса, m – масса маятника, l – расстояние от точки подвеса до центра масс.

Приведенная длина физического маятника находится из условия: lnp = ,

обозначения те же, что для физического маятника.

При сложении двух гармонических колебаний одной частоты и одного направления получается гармоническое колебание той же частоты с амплитудой:

A = A12 + A22 + 2A1 A2 cos(φ2 – φ1)

и начальной фазой: φ = arctg .

где А1, A2 – амплитуды, φ1, φ2 – начальные фазы складываемых колебаний.

Траектория результирующего движения при сложении взаимноперпендикулярных колебаний одной частоты:

 +  –  cos (φ2 – φ1) = sin2 (φ2 – φ1).

Затухающие колебания происходят по закону:

x = A0 e- βt cos(ωt + φ0),

где β – коэффициент затухания, смысл остальных параметров тот же, что для гармонических колебаний, А0 – начальная амплитуда. В момент времени t амплитуда колебаний:

A = A0 e - βt.

Логарифмическим декрементом затухания называют:

λ = ln  = βT,

где Т – период колебания: T = .

Добротностью колебательной системы называют:

D = .

Уравнение плоской бегущей волны имеет вид:

y = y0 cos ω(t ± ),

где у – смещение колеблющейся величины от положения равновесия, у0 – амплитуда, ω – круговая частота, t – время, х – координата,  вдоль которой распространяется волна, υ – скорость распространения волны.

Знак «+» соответствует волне, распространяющейся против оси X, знак «–» соответствует волне, распространяющейся по оси Х.

Длиной волны называют ее пространственный период:

λ = υT,

где υ–скорость распространения волны, T–период распространяющихся колебаний.

Уравнение волны можно записать:

y = y0 cos 2π ( + ).

Стоячая волна описывается уравнением:

y = (2y0 cos ) cos ω t.

В скобки заключена амплитуда стоячей волны. Точки с максимальной амплитудой называются пучностями,

xп = n,

точки с нулевой амплитудой – узлами,

xу = (n + ).

Примеры решения задач

Задача 20

Амплитуда гармонических колебаний равна 50 мм, период 4 с и начальная фаза . а) Записать уравнение этого колебания; б) найти смещения колеблющейся точки от положения равновесия при t=0 и при t = 1,5 с; в) начертить график этого движения.

Решение

Уравнение колебания записывается в виде x = a cos(wt + j0).

По условию известен период колебаний. Через него можно выразить круговую частоту w = . Остальные параметры известны:

а) x = 0,05 cos(t + ).

б) Смещение x при t = 0.

x1 = 0,05 cos= 0,05  = 0,0355 м.

При t = 1,5 c

x2 = 0,05 cos(1,5 + )= 0,05 cos p = – 0,05 м.

в) график функции x=0,05cos (t + ) выглядит следующим образом:

 

Определим положение нескольких точек. Известны х1(0) и х2(1,5), а также период колебаний. Значит, через Dt = 4 c значение х повторяется, а через Dt = 2 c меняет знак. Между максимумом и минимумом посередине – 0 .

Тело скользит с наклонной плоскости высотой h и углом наклона к горизонту и движется далее по горизонтальному участку. Принимая коэффициент трения на всем пути постоянным и равным f, определить расстояние s, пройденное телом на горизонтальном участке, до полной остановки
Лекции и задачи по физике